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Abstract-The recent papers of Glansdorff, Prigogine and Hays have shown that a variational principle 
may be applied to problems in fluid flow. As examples of the use of a variational formulation, the problems 
of slow viscous incompressible flow between parallel plates and in a circular tube are solved for the case 
where the phenomenological coeflicients of thermal conductivity and viscosity are functions of tempera- 
ture. The method of Rayleigh-Ritz is used with the variational form to obtain solutions which are compared 
with solutions obtained by direct analytical techniques Close agreement between the two methods of 
analysis is obtained for both Couette and Poiseuille flow, thus establishing a measure of confidence in the 

variational solution to problems for which direct solutions cannot be obtained. 

NOMENCLATURE 

4 constant in assumed velocity profile; 
C, integration constants; 
K, dimensionless temperature ratio ; 
J, functional ; 

k thermal conductivity ; 

;, 
unit normal to surface ; 
pressure ; 

r, radius (cylindrical coordinates); 
T, temperature (absolute); 
a, v, velocity; 

;, 
heat flux ; 
body force ; 

x, y, z, Cartesian coordinates ; 

V, volume. 

Greek symbols 
a, j?, y, constants ; 
l-9 flow parameter ; 

4 temperature difference ; 

6, variation notation; 
cr dummy variable ; 

;I: 
dimensionless temperature ; 
angle (cylindrical coordinates); 

t Chairman and Professor, Mechanical Engineering. 
$ Graduate Student, Mechanical Engineering. 

3 

A, dimensionless temperature ratio, Lag- 
rangian multiplier ; 

P3 viscosity (dynamic); 

59 dummy variable ; 

n, negative definite forms ; 

P? 43 dimensionless space coordinates ; 

ii, 
flow parameter ; 
surface ; 

0, potential for body force. 

Subscripts 
i,j, tensorial indices ; 

1, wall property ; 

0, reference state ; 

9 maximum. 

Superscripts 

3 bar (dimensionless notations for tem- 
perature and velocity). 

1. INTRODUCIION 

THE PROBLEMS of nonisothermal fluid flow are 
highly nonlinear even when the principal non- 
linear terms such as the inertial and convection 
terms are neglected. An important step in the 
development of a variational form which can 
be used to provide good approximate solutions 
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to nonisothermal fluid flow problems was the 
development of a variational formulation by 
Glandsdorff, Prigogine and Hays [l] in which 
the theorem of minimum entropy production 
[23 was extended to include the effects of 
mechanical irreversibility due to viscous forces. 

can be extended into the formulation 

The work of Glansdorff et al. was limited to 
the case of a slowly moving incompressible fluid 
with a nonuniform temperature. The varia- 
tional formulation was derived from one of two 

+ 2Wi 
T 6T + 2(P,jSUj - POSU~) 

I 
ni dS2 = 0 

R 
(1.5) 

where the phenomenological coefftcients 

negative definite forms, the first of which 

71 1= y!TT + pgp..Li’ 
I 1’ axj 

hIi 
- 2PX5 + 

2aPijaVi ~ o 

axi at 

was extended into the variational form 

+ 2Pi,6Vj - 2~6vi ni da = 0 1 

(1.1) 

(1.2) 

in which the viscosity and thermal conductivity 
were of the form 

k _ koK 
T (1.3) 

where the subscript “0” emphasizes evaluation 
of the phenomenological coefficients at a refer- 
ence temperature TO. The form given by equation 
(1.2) has been used by Hays [3] to solve the 
problems of Couette and Poiseuille flow. The 
second negative definite form given by 

=2 
= ;!?$$ + f.Pij$ 

I J 

- 2PXi$ + 23& < 0 (1.4) 
J 

k _ k°K 
T 

pL=--- 
T2 

(1.6) 

are employed. Since the theoretical form (1.5) 
has not been applied to any specific problem, 
it seemed appropriate to investigate the prob- 
lems of Couette and Poiseuille flow, as was 
done previously by Hays [3] ; these problems 
are amenable to analysis by classical analytical 
techniques and may be compared with the 
variational solutions. 

2. POISEUILLE FLOW 

Picard’s solution 
To determine the accuracy of the variational 

solution for Poiseuille flow through a circular 
tube, an analytical solution is required which 
has as a basis the energy and momentum 
equations. The geometry of the problem lends 
itself to cylindrical coordinates as shown in 
Fig. 1. 

FIG. I. Geometry of system for Poiseuille flow. 

The temperature of the tube wall is maintained 
at a constant temperature T,, thus any tempera- 
ture gradient observed is due to the effects 
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of viscous dissipation within the system. The 
radial pressure gradient is zero, and dP/dz is 
constant. From symmetry, the temperature and 
velocity distributions are functions of r only. 
The unidimensional momentum and energy 
equations become 

momentum 

dP Id 

dz=rdr 
(2.1) 

energy 

z( r&V:) = - rp(T)( $y (2.2) 

where T = T(r) and u = u(r). 
In dimensionless form the momentum equa- 

tion becomes 

where r = pR, T = TT,, and u = iiu,. The 
constant u, represents the maximum velocity 
achieved by the system. After one integration 
equation (2.3) becomes 

dii -_= 
dp 

C,T2 
pT2 + p. (2.4) 

Since diildp = 0 when p = 0, Cl = 0. 
Thus, 

(2.5) 

Where To is defined as (Tl + T,)/2 and T, 
is the maximum temperature achieved by the 
system. Consider now the energy equation in 
dimensionless form with (2.5) substituted into 
the right-hand side of (2.2). 

In the Picard’s solution an initial guess, usually 
L, is taken as T (‘u F1) is obtained by substitut- . 
ing T(O) in the integrand of (2.12); that result is 
re-substituted into (2.12) to yield T”’ and so on. 
The nth approximation is given by 

d pdT 

-( > 

-I. -r ” T’n- 1) 

=-VP 

3T2 _____- 
-_- 

dp 7-d~ 

(2.6) T(“) = (l + ]_)3 
s 

~ 

0 
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One integration of (2.6) leads to 
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dT T I- ’ T 
-= 
dp - p(;l+p s 

p3T2 dp + C2 p. (2.8) 

0 

Since dT/dp = 0 at p = 0, C2 = 0. 
Thus, 

dT=_T r ’ 
p(l+ s 

0 

p3T2 dp (2.9) 

or, upon integrating (2.9), 

T = &j;{]p3T2 dp}dp + C, (2.10) 

0 0 

with T(0) = 1, C4 = j.; thus, 

=f= - ,f,%;{jp’P dp}dp + 1. (2.11) 

Equation (2.11) is in a form amenable to solution 
by Picard’s method of successive approxima- 
tions. Consider (2.11) as 

where 1= TJTl and P is a flow 
the system given by: 

parameter of 

(2.7) 

~il,3,.-1)d+d~ + R. (2.13) 

In the case considered here the successive 
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approximations are truncated at T”‘; thus, dimensionless parameters as the Picard solution. 

T _ =p2’ = r4i9plh r3i7p1* 
The general functional form (2.4) may be 

786432 (1$1)‘2 
_~. 

9216(1- 
expressed as 

PPp8 l-i3p4 
+ j56 (, + )_,” - --.....3 + 

16(1 + 1) 

The boundary condition T(? 1) = 1 
evaluation of the relationship between 

2nR 

i. (2.14) 

permits 

J={[{$!?)‘+$!$($) 

0 0 

the flow 
parameter r and the temperature ratio 1 as + uds drd0 (2.18) 

r4/1’ - 8533 r3i.7 (1 + 2J3 

+ 3072 !-*I.’ (1 + J.)(’ - 49152 Ti3 (1 + ;c)9 where the Cartesian coordinates of (2.4) easily 

+ 786432 (1 + i)l* 0. - 1) = 0. (2.15) 
transform to the coordinates r, z. 

The velocity is obtained by solving (2.5) 

R*T: dp 

( >[ 

l-8%34 f7A16P30 59rYp26 

’ = m dz 34.236.9.(1 + ,I)24 - 30.2*‘.3.(1 + A)*l + 26.225.34.(1 + A)l* 

19r52*p2* 1 3r3i8 3r2A6 

-22.224.9.(1 + 1)” + 

77r4Pp 
18. 218. 9. (1 +A)‘* - 7. 212. 3*. (1 + A)9 + 10.2s.(l + A)6 

r I.* 

- 48(1 + JJ3 
+y +l. 1 (2.16) 

The constant a,,, is evaluated by using the condition fi( f 1) = 0. Introducing a dimensionless 
velocity u* defined by 

where u = u,J 

equation (2.16) may be written 

u* = - (J2r) r*P@34 - 1) r7P(p30 - 1) 59r6214(p26 - 1) 

(1 + A)* i 34.236.9.(1 + 1)24 - 30.2*‘.9.(1 + 2)” + 26.225.34.(1 + 1)18 

i9zV2(p2* - 1) 77r4Po(p - 1) - 
22.221.9.(1 + A)15 + 18. 218. 9. (1 + A)‘* - 

i3r3P(p14 - 1) 

7.212.9.(1 + A)9 + 

3r2P(p10 - 1) 
10.28.(1 + #I)6 

- 
’ 

(2.17) 

Thus, for a given value of r, the temperature Under the transformation p = (r/R) where 
ratio A can be found from (2.15) and the tem- 0 < p < 1 the functional (2.12) becomes 
perature and velocity distributions may be 2n I 

found from (2.14) and (2.17). 

Variational solution 
The variational solution to the above problem 

makes use of the same system geometry and 
+ R2ug pdpd6 (2.19) 
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with boundary conditions : 

T(f1) = TI T(0) = T” 

a(+_ 1) = 0 u(0) = u, 

where u, and T, are the maximum values of 
velocity and temperature. Using the Rayleigh- 
Ritz procedure [4] the assumed functions of 
temperature and velocity are taken as, 

T = T, - (T, - T,)P4 (2.20) 

and 

u = a,(1 - p2). (2.21) 

The arbitrary constants are evaluated from the 
relationships ~J/&t, = 0 where a1 = T, a2 = 
U WI. 

Thus, 
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The integration becomes elementary if the 
substitution K2 - p4 = 5 is made. Thus, after 
simple algebraic manipulation and integration 
(2.24) becomes 

K4 - K2 K2 - 1 K2 - 1 

2t2 
-p-cc, 

5 7 

1 

)I 

K2- 1 
-- = 

5 
0 

K2 
which reduces to 

I. C, = K2 = - 
A-1 

or, using the definition of C, 

(2.25) 

Substitution of the appropriate derivatives into (2.22) yields 
1 

[T, - (2: Tl)P4-j2 [- 4% - T,)P’](- 4P3) - IT _ (;” 7-)p4]3 

m m 1 

2 

x C- 4(X, - T)12(1 - p4) - 
[T, - (;I” T,)P413 ( - 2~) (1 - p4) P dp (2.23) 

introduction of the quantities 

and 

T A K==L=---- 
Tm - T, L-l 

reduces the above relation to the simpler form 

1 

S{ 
7 

P’(1 - P4) 
(K=: p4) - (K= _ PO)3 - 

GP3U - P’) 
(K2 _ p4)3 dp = ” 

0 

(2.24) 
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In similar fashion 
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&= *Xj{!$(?!)&(!!!) ;‘:-. 

+R2 dr; g 
0 I 

pdp=O. (2.26) 
m LG ,,,,,,,,,,,,,,,, A 

Evaluating the required derivatives and in- 
FIG. 2. Geometry of system for Couette flow. 

tegrating leads to 

R2 dp A2 i 
4n= -- - 

0 4 dz n(i - l)2 
The introduction of the dimensionless 

quantities 

or 

u2 _ R4 dp 

-0 

2 A4 i2 -~. 
m - 16 dz &-:I;( - 1)4’ 

Equating (2.25) and (2.27) leads to 

r = ‘_6(“. 1 I)(i + 1 I3 

i. 

(2.27) 
and evaluation of the phenomenological co- 
efficients pO. and k,. at a reference temperature 
T, defined by 

(2.28) 7- _ Tl + ‘m 
0 2 

where f is defined by (2.7). The dimensionless 
temperature and velocity distributions become 

T = /i - (i - l)p4 (2.29) 

where T, is the maximum temperature achieved 
in the system. reduces the energy equation to 

u* = (2.30) 

where T and u* are defined as in the Picard’s 
solution. Thus, for a given value of the flow 
parameter F the temperature ratio i is available 
from (2.28) leaving the temperature distribution 
(2.29) and the velocity distribution (2.30) ex- 
plicit functions of the independent variable p. 

3. COUE’ITE FLOW 

Closed form solution 
The second flow system under study is 

Couette flow between two infinite parallel 
plates separated by a flow height h. The lower 
plate is stationary and the upper plate moves 
with a constant velocity ci. The system is 
illustrated in Fig. 2. Both plates are kept at a 
constant temperature TI and the flow is uni- 
dimensional. The first solution is the closed-form 
solution. 

(3.1) 

Likewise the momentum equation is reduced IO 

(3.2) 

after the required substitutions are made and 
one integration is performed. The constant u 
is a constant of integration. If (3.2) is substituted 
into (3.1) and the indicated differentiation is 
performed the following equation is obtained 

- 

‘!g dt! +7T4=() 

( > 

(3 3) 

where 
/ I-\ 

i’=r2x I+$. 
t ) I 
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The use of the substitution zero, and using (3.11) Cr = (y/q’). Thus, - 1 

z(T) = c ( > w 
reduces (3.3) to 

+22+2yT’=o. (3.4) 

The transformation t = T2 and z = T2j(t) 
transforms (3.4) to 

$f(5) = - Y (3.5) 

or 

S(5) = - rr + Cr. (3.6) 

In terms of the original variables (3.6) becomes 

yT4 + clT= (3.7) 

which can be written in the form 

dT 
d$j = i(Jr) TJ(T - C,/y) (3.8) 

or, after integration, 

&$““” - 1 JGIY) 
T = - (JYM + c2 (3.9) 

using the relation -i arccos w = arccosh w 
equation (3.9 becomes 

Two boundary conditions are that 

dT 
- = 0 when T = g = i 
d4 

(3.11) 
1 tl 

and 

T(o) = ; (3.12) 

where q is defined by q = (TJT,). 
Both (3.11) and (3.12) are consequences of the 

symmetry of the system. Using (3.12) C2 is 
4L 

T=isech ~(J#J . [ 1 (3.13) 

Substitution of the value of the constant Cr 
yields the following expression 

T = i sech 

When the expression (3.14) is substituted into 
(3.2) and one integration is performed, the 
resulting expression for I is obtained. 

ii = J[sx(: + l,] tanh I 

aJCx(tt + l)] 4 
$ I 

+ c,. (3.15) 

Since ii( - 1) = 0, the constant can be evaluated 
to give 

ii = Jr& + l)] tanh r aJcx(tt + 1,l + + I 
+ J[&,: + l)] tanh { 

sJMtl + 111 
$ I . (3.16) 

The value of the constant of integration a is 
now determined from the boundary condition 
ii(l) = 1). Thus, 

v* a = J[x(q + I,] tanh- 
1 J[tlx(rt + I,] 

2 

(3.17) 

The relationship x(q) is determined from the 
boundary condition T(+ 1) = 1. Thus, 

xz-4!-l 
( > 11 . 

(3.18) 

Final relations for T and ii are obtained when 
the value of x from (3.18) is substituted into 
(3.14) and (3.16). or 

1 

E = 2J(l - ?j2) 
tanh [+ tanh- ’ J( 1 - $)I + 3 

(3.19) 

T = i sech [4 tanh- l J( 1 - q’)]. (3.20) 
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Variational solution 
As in the closed-form solution to Couette 

flow, T = T(j) and u = u(y). The body force is 
neglected and the normal components of the 
stress tensor are everywhere zero on the 
boundary. The functional to be minimized takes 
the form, 

The arbitrary constant B is evaluated from the 
relationship 

; = _l$$&($)d+ = 0. (3.24) 

After the required derivatives are evaluated and 
substituted into (3.24), and the indicated integra- 
tion is performed, the following relationship 
is found. 

J = j {&+‘($r+ +$$$}d4. (3.21) 

-1 

Using the Rayleigh-Ritz procedure the assumed 
temperature profile is given by 

T = T, - (T, - TIW2 (3.22) 

and the assumed velocity profile by 

.=i(l ++)+B&l -@) (3.23) 

where T, and B are arbitrary constants. The 
boundary conditions are 

T( + 1) = TI T(0) = T, 

u(-1) = 0 u(1) = u. 

(3 + B) l +iln- 
Kfl 

K2(K2 - 1) 2K3 K - 1 1 

where 
(3.25) 

A = T,(1 - rl), 
1 

K2 = ~ 
1 - q’ 

B TI 
P=, and v.=~. 

m 

Equation (3.25) can be solved for j3 in terms of q. Thus, 

(2 + r)U - ?I 
[ 

1 + Jo - t4 
21 

+ (q - 4) (1 - q)+ In 
1 - J(1 - tt) 1 + a2 + 1g + (2~~ - 16~ - 13)ln 1 + ,,/(I - q) 1 ’ @I 

‘I 4(1 - VY 1 - J(1 - tl) 

(3.26) 

The determination of the constant T, is found by a similar procedure. 

Equation (3.27) may be rewritten as 

1 si 4” 42 4” X?(l + tt) 
(K2 - $2)3 - (K2 - q52)3 + (K2 - c$‘)~ - 4(1 - q)2 

-1 
II d+ = 0 (3.28) 

where previously defined dimensionless quantities are employed. After integration (3.28) takes the 
form 
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1 + JCl - rl) xdl + rl) (1 - t1Y (2 - rt) 

1 - J(1 - rl) - Ly 1 - t1)2 16p1 

+ (4 - 3tl)(l - rl)f ln 1 + J(l - rl) + B - tt)(r12 - 2rl - 10) 
32 1 - J(l - tl) 4rl 

+ 16 - 1Orj + 3~~ (1 - t1)(36 - 91~ - 5rt2 + q3) _ l8 
8 

(1 - rj)* In 1 + 41 - 4 + p 
1 - J(l - rl) I[ 4V2 

+ (190 - 68~ + 16~~ - 3q3) ln 1 + ,/(l - rj) 

8(1 - tl)* 1 - J(l - rt) 
= 0. (3.29) 

The dimensionless temperature and velocity 
functions become 

T=;[1-(1-q)c#J2] (3.30) 

and 

ii = f(1 + 4) + j%#J(l - 42). (3.31) 

Thus, relations (3.26) and (3.29) may be solved 
numerically for /3 and q for various values of 1 
and the relations (3.30) and (3.31) may be used 
for obtaining velocity and temperature distribu- 
tions. 

4. RESUL’I-S 

Poiseuille flow 
The relationship between the flow parameter 

r and the temperature ratio A for the Picard 
solution is given in (2.15) and for the variational 
solution in (2.28). Calculations are made by 
first selecting a value for the flow parameter f, 
and then solving the resulting relations (2.15) 
and (2.28) for the roots I > 1. Equations 
(2.15) and (2.16) take the form F(L) = 0 after 
substitution ofa value for r. The root ofF(L) = 0 
was found by the method of bisection using a 
digital computer. This method consists of 
evaluating the function F(1) at an arbitrary 
starting point I, and then at successive intervals 
of Al noting the interval where F(I) changes 
sign. The interval is then halved until the root 
is found to a specified accuracy 6. A value of 
0001 for c proved quite sufficient. After the 
roots of F(I) = 0 are found for various values 

P 0 

FIG. 3. Velocity distributions in Poiseuille flow. 

of r, the temperature and velocity distributions 
may be calculated by substitution into relations 
(2.14) and (2.17) for the Picard solution. and 
relations (2.29) and (2.30) for the variational 
solution. 

The actual profiles for both temperature and 
velocity for the variational solution are suf- 
ficiently close to those of the Picard solution 
as to prevent accurate plotting. For this reason, 
only the Picard solution for velocity and tem- 
perature distributions are plotted in Figs. 3 and 
4. Close comparisons of the variational and 
Picard solutions may be made by examining 

I 

P 0 

FIG. 4. Temperature distributions in Poiseuille flow. 
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the detailed data presented in Table 1. A 
graph of per cent temperature variation vs. 
the nondimensional radius is oresented in 
Fig. 5 and a similar graph is presented in Fig. 
for per cent velocity variation. 

P 

6 

0 0.25 0.5 0.75 I.0 

-1.0 

-2.0 

-3.0 

I I I I 

FIG. 5. Per cent temperature difference for a variational 
solution to Poiseuille flow based on a Picard approximation. 

0.25 0.5 0.75 I.0 

P 

FIG. 6. Percent velocity difference for a variational solution 
to Poiseuille flow based on a Picard approximation. 

It is apparent from the previous graphs and 
tables that the solution for the temperature 
distribution by the variational method agrees 
very well with the solution using Picard’s 
method for all but the largest values of the flow 
parameter r. The error for the velocity distribu- 
tion increases with higher values of r, however 
the error approaches 10 per cent for a value of 
I- = 20 which corresponds to a very high 

Table 1. Dimensionless temperature and aeiocity profiles u a 

function of theflow parameter and the radius p as obtained by 
Picard’s (p) and a uariationalformulation (a) 

l- 
- 

2. 

16. 

P T(U) 

0.0 1.0155 
0.1 1.0155 
0.2 1.0155 
0.3 1.0154 
0.4 1.0151 
0.5 1.0145 
0.6 1.0135 
0.7 1.0117 
0.8 1 .cQ92 
0.9 I.0053 
1.0 1GOoO 

0.0 1.1177 
0.1 1.1177 
0.2 I.1175 
0.3 1.1167 
0.4 1.1114 
0.5 1.1103 
0.6 I.1102 
0.7 1.0894 
@8 1.0695 
0.9 lJMO5 
1.0 IwOO 

QP) u’(c) 

1.0157 0.2499 
1.0157 @2475 
1.0157 o-2399 
I.0156 0.2275 
1.0153 0.2000 
1.0147 0.1875 
1.0136 0.1600 
1.0119 0.1275 
1 GO92 oG9cQ 
IQ053 0.0475 
l.oooo OGOOO 

1.1307 @7049 
1.1307 0.6978 
1.1305 06767 
1.1294 0.6415 
1.1269 0.592 1 
1.1121 0.5287 
I.1117 0.45 12 
I.0959 0.3595 
I.0727 0.2538 
1 GUI8 @I339 
lGC00 00X0 

u*(a) 

0.2514 
0.2489 
0.2413 
0.2286 
02108 
0.1880 
0.1602 
0.1273 
0.0896 
0.047 1 
O~oooO 

0.7612 
0.7533 
0.7294 
0.6896 
0.6340 
0.5628 
0.4764 
0.3758 
0.2618 
0.1361 
O%?QcM 

Table 2. Dimensionless temperature and velocity profiles as a 
function of thejlow parameter 1 and the dimensionless space 

coordinares C$ as obtained from an exact solution (e) and a 
t~ariationalfhrmulation (c) 

- 

x 9 T(c) 7’(e) ii(C) G(e) 
- .___. _._. 

0.5 - 1.0 1wIO 
- 0.8 1.0750 
-0.6 1.1133 
-0.4 1.1751 
-0.2 1.2001 

0.0 1.2084 
0.2 1.2001 
0.4 I.1751 
0.6 1.1133 
0.8 1.0750 
I.0 l.oooo 

4.0 - 1.0 l.oooO 
-0.8 1.3424 
- 0.6 16087 
-0.4 1.7990 
-0.2 1.9132 

0.0 1.9512 
0.2 1.9132 
o-4 1.7990 
0.6 1.6087 
0.8 1.3424 
1.0 1GOOO 

IS@00 OMQO OTMOO 
1.0422 00951 0,089 1 
I.0772 0.1935 0.1951 
1.1033 0.2943 0.2867 
1.1195 0.3967 0.3923 
1.1250 o-5Ow 0.5000 
1.1195 06033 06077 
1.1033 0.7070 0.7133 
1 G772 0.8065 0.8149 
I.0422 0.9049 0.9109 
1 ,GOOO 1 wMw) 1 NIOO 

lwo0 OwoO Ooooo 
1.2438 0.0888 0.4788 
1.5053 0~1851 0.1199 
1.7514 0.2869 0.22 12 
1.9326 0.3925 0.3513 
2GOOO O~SOOO 0.5cQcl 
1.9326 06074 06486 
I.7514 0.7131 0.7788 
I.5053 O-8149 0.880 1 
1.2438 0.9112 0.9521 
1wOO l~ooo0 1 woO 
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flow rate. Since the percent error is based on 
the Picard method, the comparison is made 
between two approximate solutions. However, a 
comparison to the work of Hays [3] indicates 
that the Picard’s approximation to the exact 
solution is reasonably accurate. 

Couetteflow 
The relationship between the flow parameter 

x for Couette flow and the temperature ratio q is 
given for the closed form solution by the simple 
relation (3.18). For a given value for x, the 
temperature and velocity and temperature func- 
tions (3.19) and (3.20) become functions of the 
dimensionless coordinate 4 alone. The x - q 
relationship for the variational solution is a 
complicated form requiring both relations (3.26) 
and (3.29). Recourse to the digital computer 
must be made to find the temperature ratios tf 
for given values of the flow parameter 1. The 
bisection method described in the previous 

r 
FIG. 7. Temperature difference in Couette flow. 

I 
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FIG. 8. Velocity difference in Couette flow. 

section is used for this task. Once the root 
rf < 10 is found, the temperature and velocity 
distributions are easily generated from equations 
(3.30) and (3.31). 

Again close agreement between the variational 
and closed-form solutions prevent accurate 
comparison by plotting of temperature and 
velocity profiles. The temperature and velocity 
distributions as found from the exact solutions 
are shown in Figs. 7 and 8. Detailed data are 
presented in Table 2. A graph of percent tem- 
perature difference vs. the non-dimensional 
space coordinate 4 is presented in Fig. 9 and 
the analogous graph for velocity data is pre- 
sented in Fig. 10. 

4 
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fI II I 
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FIG. 9. Percent temperature error [or variational solution 
based on exact solution to Couette flow. 

FIG. lo. Percent velocity error lor varIatIonal solution based 
on exact solution to Couette flow. 
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ReI..es articles r&en& de Glansdorff, Prigogine et Hays ont mootre qu’un priocipe variationoel 
peut &tre applique aux probl+mes de l’bcoulement d’un guide. Comme exemples de l’emploi d’une 
formulation variationnelle, les problemes de l’ecoulement incompressible visqueux a faible vitesse eotre 
des plaques paralleles et darts un tube circulaire sont rCsolus dans le cas oh les coeffcients ph&nomCno- 
logiques de conductivite thermique et de viscosite sent fonctions de la temperature. La methode de 
Rayleigh-Ritz est employee sous forme variationoelle pour obtenir des solutions qui soot comparees 
aux solutions obteouea par des techniques analytiques directes Chr obtient un accord ttroit entre lea deux 
m&hodes d’analyse pour les &coulemeots de Couette et Poiseuille, Ctablissant aiosi un degrO de confiance 
darts la solution variatioonelle des problbmes pour lesquels des solutions directes ne peuvent pas &re 

obtenues. 

Zusammenfas?amg-Die neueren Arbeiten von Glansdorff, Prigogine und Hays haben gezeigt, dass ein 
Variatioosprinzip auf Probleme der Fliissigkeitsstr6mung angeweodet werden kann. Als Reispiele fiir 
V~tio~formulie~og~ siod Probleme der laogsamen, z&hen, inkompr~ibl~ StrOmung zwischeo 
parallelen Platten turd-in einem Rohr mit Kreisq~er~hoi~ filr den Fall gel&t, dass die philnomeoolo- 
eischen Koeffizienten der Wimeleituna uod der ZHhiakeit Fuoktionen der Temperatur siod. Die Methode 
ion Rayleigh-Ritz wird mit der Variati&sform verwende&-um Liisungen zu erhaiten, die verglichen werden 
mit Liisuogeo, die sich durch direkte Analyse ergeben. Gute ~bereiostimmung zwischen den beiden 
Methoden x&t sich sowohl fiir Couette- als such Iiir Poiseuillestriimung, womit sich ein Zuverliissigkeits- 

mass lIir die VariatiooslBsung ergibt, fti die Probleme, die keioe direkte LSsung erlauben. 

ABBOTS~S-B HeH3BHO O~y6~~KOBaHH~X CTaTbRX ~~aHC~Op~a, ~p~~O~~Ha II X&C3 
noHa3aa0, HT~ Bap~a~~oHH~~ Hplr~HMn MACHO HpHMeHHTb H 3aAaqaM TeHeHHrr ~H~K~CTH. 
IIpHMepaMH npHME!HeHHR BapHauHOHHOrO MeTOga RBJt3mTCR 3aRaHH MeRJIeHHOrO TeueHHH 
BRBKOti HeCIKKaMiNMOi H(IIAKOCTIi MemAy napaHJH?JrbHbIMU HJIaCTHHaMB II B KpyrJtOti Tpy6e, 
HoTopbIe pemenhr nnH cnyuafl, KOrAa @?HOMeHOJIOrHHt?CKHe HO3@@HHeHTJJ Tt?IIJIOIlpOBOA- 

HOCTII a BR~K~CTH RBJIRH)TCR +YHK~H~~MH TeMHepaTyphr. MeTOR Penen-PHTHa 3 HapHaHaoH- 
HOM E&f@.? IIClSOJIb30BZ.lJlCR HJlSi nOJIJ'=IeHAH pt%UeHZ&, KOTOPbR? CpaBHBBaIoTCfi C pt%lIeHHRMH, 

~O~yqeHH~MK He~OCpOACTBeHH~M~ 3Ha~~T~~eCK~~~ MeTO~aM~. nOJij'W?HO XOpOUIee CO- 

OTB0TCTBEl~~~~~~3THM~~B~MRM~TO~3ftIll~~~T~~~HM~~~~TT~U~~33~t~A;T~KI?M06~330Dl, 

J'CTaHOBJE!Ha B03MO=HOCTb lTpMMeHt?HSSH BapW~HOHHbiX MRTOAOE K TeM 3ai[aYaM, ,WR 

KOTOPbIX TO'4HbIe peUIf?HllR HE! MOQ'T 6bITb IlOJIyWHbI. 


