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TO NONEQUILIBRIUM FLUID FLOW

H. W. BUTLERt and ROBERT RACKLEY}
West Virginia University, Morgantown, West Virginia

(Received 18 February 1967)

Abstract—The recent papers of GlansdorfY, Prigogine and Hays have shown that a variational principle
may be applied to problems in fluid flow. As examples of the use of a variational formulation, the problems
of slow viscous incompressible flow between parallel plates and in a circular tube are solved for the case
where the phenomenological coefficients of thermal conductivity and viscosity are functions of tempera-
ture. The method of Rayleigh—~Ritz is used with the variational form to obtain solutions which are compared
with solutions obtained by direct analytical techniques. Close agreement between the two methods of
analysis is obtained for both Couette and Poiseuille flow, thus establishing a measure of confidence in the
variational solution to problems for which direct solutions cannot be obtained.

NOMENCLATURE

constant in assumed velocity profile;
integration constants;
dimensionless temperature ratio;
functional ;

thermal conductivity ;

unit normal to surface;
pressure ;

radius (cylindrical coordinates);
temperature (absolute);

velocity;

heat flux;

body force;

Cartesian coordinates;

volume.
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Greek symbols
«, f,7, constants;

r, flow parameter;

4, temperature difference ;
d, variation notation;

€, dummy variable ;

dimensionless temperature ;
angle (cylindrical coordinates);

-

]

t+ Chairman and Professor, Mechanical Engineering.
{ Graduate Student, Mechanical Engineering.

dimensionless temperature ratio, Lag-
rangian multiplier;

.

s viscosity (dynamic);

g, dummy variable;

I1, negative definite forms;

p, ¢, dimensionless space coordinates;

hé flow parameter;

Q, surface;

, potential for body force.
Subscripts

iJj, tensorial indices;

1, wall property;

0, reference state;

m, maximum.
Superscripts

°, bar (dimensionless notations for tem-

perature and velocity).

1. INTRODUCTION

THE PROBLEMS of nonisothermal fluid flow are
highly nonlinear even when the principal non-
linear terms such as the inertial and convection
terms are neglected. An important step in the
development of a variational form which can
be used to provide good approximate solutions
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to nonisothermal fluid flow problems was the
development of a variational formulation by
Glandsdorff, Prigogine and Hays [1] in which
the theorem of minimum entropy production
[2] was extended to include the effects of
mechanical irreversibility due to viscous forces.
The work of Glansdorff et al. was limited to
the case of a slowly moving incompressible fluid
with a nonuniform temperature. The varia-
tional formulation was derived from one of two
negative definite forms, the first of which

OT Ow;, (3T v,
_ 1920w 1 “h
I e v 7 Piig,
v,  20P. v,

—2pX,— 4+ —H g .

P Y o, a <0 4D

i
was extended into the variational form

T,(0T\* uT, (dv; dv,\}
— ] + — 4+
2\ 0x; T \0x; ox,

1[ k,
14
ov —k,T,(0T
0°0 i (5T
+iax1}dV J[ T (axi)
2

Tl )

in which the viscosity and thermal conductivity

were of the form

HoT, ko T,
T T

u= (1.3)

where the subscript *‘0” emphasizes evaluation
of the phenomeno]oglcal coefficients at a refer-
ence temperature T,. The form given by equation
(1.2) has been used by Hays [3] to solve the
problems of Couette and Poiseuille flow. The
second negative definite form given by

_20Tow, 20T, o
T ox, Tt Yox
ovi , aP d;
- < 1.4
20X ot az 0 (4
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can be extended into the formulation

w, 0T oy
5!{[?6— + ((5 P — P”) ,] axj}dV

2w
+ J[ ;)'67‘ + 2(P;;60; — pwév,.):ln,.dQ =0

2

(L.5)
where the phenomenological coefficients
kT, 1,13
k= u=ty (1.6)

are employed. Since the theoretical form (1.5)
has not been applied to any specific problem,
it seemed appropriate to investigate the prob-
lems of Couette and Poiseuille flow, as was
done previously by Hays [3]; these problems
are amenable to analysis by classical analytical
techniques and may be compared with the
variational solutions.

2. POISEUILLE FLOW

Picard’s solution

To determine the accuracy of the variational
solution for Poiseuille flow through a circular
tube, an analytical solution is required which
has as a basis the energy and momentum
equations. The geometry of the problem lends
itself to cylindrical coordinates as shown in
Fig. 1.

F1G. 1. Geometry of system for Poiseuille flow.

The temperature of the tube wall is maintained
at a constant temperature T,, thus any tempera-
ture gradient observed is due to the effects
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of viscous dissipation within the system. The
radial pressure gradient is zero, and dP/dz is
constant. From symmetry, the temperature and
velocity distributions are functions of r only.
The unidimensional momentum and energy
equations become

momentum

(2.1

energy

d 2
%(rk(T) ‘;—f) - - ry(T)(a-r‘f) 22)

where T = T(r) and u = u(r).
In dimensionless form the momentum equa-
tion becomes

dP\ 1d/ p, T? da

where r = pR, T = TT,, and u = uu,. The
constant u,, represents the maximum velocity
achieved by the system. After one integration
equation (2.3) becomes

du R?’T? (dP C,T?

— = — )T+ 2 — (24

dp 2,uou,,,Tf(dz>p + p @4

Since dit/dp = 0 when p = 0, C, = Q.
Thus,

du R2T? (dP\ -
— = =L )T
dp  2uwm,T? (dz)p

Where T, is defined as (T, + T,,)/2 and T,
is the maximum temperature achieved by the
system. Consider now the energy equation in
dimensionless form with (2.5) substituted into
the right-hand side of (2.2).

d(pdT -r .=

—\ =)= ——5pT?

dp(T dp) Z+ 177
where A = T,/T, and I is a flow parameter of
the system given by:

2R (dPY
Tk, T\ dz )

(2.5)

(2.6)

@.7)
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One integration of (2.6) leads to
)
dT T r 3 T
—_—= - —— T2d C,—. 28
0
Since dT/dp =0atp =0,C, = 0.
Thus,
Fed
dT = _rr T?d 2.9)
- p (1 + 1)3 p3 p -

0

or, upon integrating (2.9),

o p)

_ T -

Tegr T e
0 0

with T(0) = A, C, = 4; thus,

p P
r T _ )
] 4]

Equation (2.11) is in a form amenable to solution
by Picard’s method of successive approxima-
tions. Consider (2.11) as

T =

o _ €
i :fMSJ%“efz dé}de + 2 (212)
0 0

In the Picard’s solution an initial guess, usually
A, is taken as T, T is obtained by substitut-
ing T'9 in the integrand of (2.12); that result is
re-substituted into (2.12) to yield T'* and so on.
The nth approximation is given by

—r [re-v
i +;.)3j ”

0

x{j@T""”dé}de + A (2.13)
o

T =

Tm —

In the case considered here the successive
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approximations are truncated at T'?'; thus,
r4 9 16

786432(1 + A2
rcp
256(1 + )5

1"3712

T 9216(1 + A4)°
ri’p*
16(1 + A
The boundary condition T(+1) =1 permits
evaluation of the relationship between the flow
parameter I" and the temperature ratio 4 as
r*;° —8533rr3i7(1 + 2)»°

+30727%5(1 + A)° — 49152743 (1 + A)°

T(2) —

+ 4. (2.14)
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dimensionless parameters as the Picard solution.
The general functional form (2.4) may be

expressed as
,uoTz du\?
272\ dr

R
[R(w) -
0
+u¥}drd() (2.18)

2n

|

where the Cartesian coordinates of (2.4) easily
transform to the coordinates r, z.

+ 786432(1 + A2 (A - 1) =0. (2.15)
The velocity is obtained by solving (2.5)
- RZT% dp r8118p34 r7ll6p30 N 591“6214;)26
T 2, T2\ dz /{34.2%°.9 (1 + 1) 30.227.3.(1 4+ A% " 26.225 3% (1 + A)'®
_ 19r3412p%2 7Ir*At8p18 13348 4 r:i¢
22.224 9 (1 + ' 18.218 9 (14+4)!17  7.2'2.32 (1 +2)° 10.2%8.(1 + A)®

The constant u,,
velocity u* defined by

where u = u,,i

equation (2.16) may be written

is evaluated by using the condition u#(+1) =
* — /‘10
“ ()

r7'116(p30 — 1)

r

)2
W + :|+ 1. (2.16)

0. Introducing a dimensionless

591*6'114(1)26 -1

- (\/21*) I“Bllé(p34 _ 1) 3
T+ AP 34.2%.9 (1 + >
191*5'112(;)22 _ 1)

771“‘)'10([718 _ 1)

30.227.9.(1 + A)'°

26.225 3% (1 + A)'®
137318(p'* — 1) 3r225(p'° — 1)

T22.22T 9 {1 + AP

18,218 9 (1 + A2

7.2'2.9.(1+2)° 10.28.(1 + A)°

_T(p® -1 _ Ap? - 1)
48(1 + 1) 2 :

2.17)

Thus, for a given value of I', the temperature
ratio A can be found from (2.15) and the tem-
perature and velocity distributions may be
found from (2.14) and (2.17).

Variational solution
The variational solution to the above problem
makes use of the same system geometry and

Under the transformation p = (r/R) where
0 < p < 1 the functional (2.12) becomes

2n 1
kT, (dT\* p,T2(du\?
J=| |{aee (S} 4 BT
272 \dp) T2\
00

dP
+ Rzua}p dpdo (2.19)
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with boundary conditions:
T(£)=T,
wW+1)=0

TO)=T,
u(0) = u,,

where u,, and T, are the maximum values of
velocity and temperature. Using the Rayleigh-
Ritz procedure [4] the assumed functions of
temperature and velocity are taken as,

T=T,—(T,— T)p* (2.20)

and

u=u,(l — p?). (2.21)

The arbitrary constants are evaluated from the
relationships 0J/0a; = O where o, = T,,, a, =
U,

Thus,
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The integration becomes elementary if the
substitution K? — p* = ¢ is made. Thus, after
simple algebraic manipulation and integration
(2.24) becomes

K -K* K-l (K -1
282 ¢ \ 2

1 K2-1
— - =0
)
C,=K= "

A-1

or, using the definition of C,

A\ 4%
2 __ (4
u, = 4<——A — 1) T

which reduces to

(2.25)

1

A o [[keTp(OT) 2 (3T | (ITY KT,
oT, 2T2 "\ ép J8T,\ 0p p) 2

0

or,
1

KTLOT o (OT\ _KT(TY (2T
T? 8p 0T, \ dp T3\ dp ) \ 0T,

0

_ B TS (ou)?
T3 \op

_ 24T
T3 0T,
wT2(u\*( 2 oT 3
5 (a,,) (‘Fa—r,.)}”“"“’

(o

(2.22)

Substitution of the appropriate derivatives into (2.22) yields

1

k. T,

k. T,

_ — N(— 3y _
j{[r..—(rm—n)p‘]’[ HTn = TP°) (= 49°) [T, — (T, - T)P*T?

x [- 4T, - TP (1 - p*) -

#,Te

introduction of the quantities

[T, — (T, — Tl)p‘]3(— 2up) (1 — p‘)}pdp (2.23)

T, A
K2 — m =
T,-T, A1-1
and
(T _ _ #e Ty
A - (Tm T1)$ Co - 4A2ko

reduces the above relation to the simpler form
1

p’(1 — p*

et
(K*—pY (K*-p*

0o

Cop’(1 = ”4)}d =0. (2.24)

(K2 _ p4)3
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In similar fashion

1
oJ u, T2 (ou\ 0 [ou
— = |{t = ) (%
ou,, T? \dp/ou,\dp
)

+ R2<d—P> Ou } pdp=0.  (226)

dz / ou,,

Evaluating the required derivatives and in-
tegrating leads to

_ R*(dp\ 4*
= e \d ) u T - 1

or
R*(dp\* 4* A2

2=—(-> —_—. 2.27

tm 16(dz> Zrin e %2
Equating (2.25) and (2.27) leads to
s v 3

POl

/

where I' is defined by (2.7). The dimensionless
temperature and velocity distributions become

T =i-(- 1)y (2.29)

= r A_ _ nR
u‘—(\/i)wl)z(l p°)

where T and u* are defined as in the Picard’s
solution. Thus, for a given value of the flow
parameter I" the temperature ratio 4 is available
from (2.28) leaving the temperature distribution
(2.29) and the velocity distribution (2.30) ex-
plicit functions of the independent variable p.

(2.30)

3. COUETTE FLOW

Closed form solution

The second flow system under study is
Couette flow between two infinite parallel
plates separated by a flow height h. The lower
plate is stationary and the upper plate moves
with a constant velocity U. The system is
illustrated in Fig. 2. Both plates are kept at a
constant temperature T; and the flow is uni-
dimensional. The first solution is the closed-form
solution.

H. W. BUTLER and ROBERT RACKLEY

F1G. 2. Geometry of system for Couette flow.

The introduction of the dimensionless

quantities
2 T
2y - . u
== T = = —
¢= T, “TU
and evaluation of the phenomenological co-
efficients y,. and k,. at a reference temperature
T, defined by

T, + T,
T, =-L_""
¢ 2

where T, is the maximum temperature achieved
in the system. reduces the energy equation to

d [1dT T\ 1 [di\?
~iol(rae) (1 T)melae) o0

where

p#U?
2K, T,
Likewise the momentum equation is reduced to
du -
— =qaT? 2
P o (3.2)

after the required substitutions are made and
one integration is performed. The constant «
1s a constant of integration. If (3.2) is substituted
into (3.1) and the indicated differentiation is
performed the following equation is obtained

_dT T —
d (dT)+ oT4 = 0

w— E (33)

where
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The use of the substitution
dT\?

~ dz o
— =2 4 =0.
TdT z 4+ 2yT* =0

The transformation ¢ = T? and z = T¢)
transforms (3.4) to

reduces (3.3) to

(34)

d
d_gf(é) =—y (3.5)

or

f@@)=-¥w+C, (3.6)

In terms of the original variables (3.6) becomes

dT\? _ " 5
(@) = —yT*+ C,T (3.7)

which can be written in the form

dT _

a6 iWY T T - Cyfy) (3.8)
or, after integration,

—i

T TE = - Wne+C 69)

using the relation —i arccos w = arccosh w
equation (3.9 becomes

o ((2)mfrim o [

Two boundary conditions are that

dT _ T
= (0 when T=—"'=%

b T, (3.11)

and

TO) = (3.12)

x| —

where 7 is defined by n = (T,/T,,).

Both (3.11) and (3.12) are consequences of the
symmetry of the system. Using (3.12) C, is
4L
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zero, and using (3.11) C, = (y/n?). Thus,
1 1
T = ~sech| - .
. [”(\/M:I

Substitution of the value of the constant C,
yields the following expression

T = }Isech {ﬂ["—(ﬂ"*ﬂﬂ ¢}. (3.14)

When the expression (3.14) is substituted into
(3.2) and one integration is performed, the
resulting expression for i is obtained.

tanh {———a‘/[x(:,}+ 2 d>}

+ Cs.

(3.13)

_ 1
=
VInxn + ]
(3.15)
Since #(— 1) = O, the constant can be evaluated
to give

U=

ah {a\/[x(:’rj D] ¢}

1 a/[xin + 1)]}
——————tanh<{ —>Y—2"—— =% (3.16
+\/['TX('I 1] tan { (3.16)

The value of the constant of integration « is
now determined from the boundary condition
@(1) = 1). Thus,

_ nt NI CER)
a = \/—[Xml—)] tanh {-—2_}

1
JInn + 1]

(3.17)

The relationship x(n) is determined from the
boundary condition T(+1) = 1. Thus,

)

Final relations for T and @ are obtained when
the value of y from (3.18) is substituted into
(3.14) and (3.16), or

1

(3.18)

u= mtanh [d) tanh™! \/(l - r]z)] + 11'
(3.19)
T = %sech [¢tanh™! /(1 — %] (3.20)
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Variational solution
As in the closed-form solution to Couette

flow, T = T(y) and u = u(y). The body force is
neglected and the normal components of the
stress tensor are everywhere zero on the
boundary. The functional to be minimized takes
the form,

p L2 du

77 (qu) }dc/). (3.21)

1

k,T,/ dT\?
RECAHE

-1
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The arbitrary constant B is evaluated from the
relationship
1

|

After the required derivatives are evaluated and
substituted into (3-24), and the indicated integra-
tion is performed, the following relationship
is found.

oJ
0B

u,T2% 0u @ (6u

T 3B %)dd, =0 (3.24)

, S . 1 1 K+1]
Using the Rayleigh—Ritz procedure the assumed G + )| oz ozt 530 o
e KAK*—1)  2K* K -1
temperature profile is given by | | Ka+i
3 N Pl
T =T, — (T, — T))¢? 322 —G +6ﬁ)[K2_1 KM 1]
and the assumed velocity profile by K? 3K, K+17
+98| 2+ =5 — —lno—— |=
U , K2-1 4 "K—1]|
u=3(1+¢)+Bpl—¢?) (23 (3.25)
. where
where T,, and B are arbitrary constants. The 1
boundary conditions are A=T1—-n, K= Ty
() =T, TO) =T, B T,
B=— and n=—.
W-1)=0 wul)=U. U T,
Equation (3.25) can be solved for f in terms of #. Thus,
2 1 - 1 1 -
[( s/ Uk | SRS & s J n)]_
g = 2y 1-Ji-n (3.26)
I:(n+2)2+18+(2r]2—— 16n — 13)lnl+\/(1 —n):l' '
n 41 — n)* 1—-Ja-mn

The determination of the constant T, is found by a similar procedure.

a
T,

_1 kT, (dT\* @ [ 1
- J {5 @) )

Equation (3.27) may be rewritten as

¢* ¢’

k,T,dT 8 (0T du p,T? 0 (1
asores) (@) " am(m)fee -0 o

+ B — 341 — ¢7)

1 ¢4 B
J‘{(K2 __ ¢2)3

-1

N ol +nlG
(K*— 9% (K2 — ¢ 41 —n)

T<Erar ]}d¢=0 (3.28)

where previously defined dimensionless quantities are employed. After integration (3.28) takes the

form
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@-mU—n nl-—m 1+ 0-n m +'7){(1 —n*e—n
4n 8 I—Jt—n 41 -n? 16n
4 — — )t - - 2_21-10
=3l -mt 1+J0-n 002 - 10
32 - -n 4n
16 — 10n + 352 s Lt/ =1 ,[(1 =) (36 — 91n — 5n% + 1)
—_— (-t hn—— — 18
+ 8 (1 ") nl—\/(l—ﬂ) +ﬂ 4’12
(190 — 687 + 160> — 393 1 + J(t — r])_}
In = 0. 3.29)
8(1 — )t 1= —mn] (
The dimensionless temperature and velocity !
functions become \ \N?\ 3o
] -
T=10-a-ne?) (330) # © ) - >
" I LT
and
-l o o ol
=31+ ¢)+ Pl —¢?). (331 B Lm0

Thus, relations (3.26) and (3.29) may be solved
numerically for § and n for various values of x
and the relations (3.30) and (3.31) may be used
for obtaining velocity and temperature distribu-
tions.

4. RESULTS

Poiseuille flow

The relationship between the flow parameter
I' and the temperature ratio 4 for the Picard
solution is given in (2.15) and for the variational
solution in (2.28). Calculations are made by
first selecting a value for the flow parameter I’
and then solving the resulting relations (2.15)
and (2.28) for the roots 4> 1. Equations
(2.15) and (2.16) take the form F(1) = 0 after
substitution of a value for I'. The root of F(4) = 0
was found by the method of bisection using a
digital computer. This method consists of
evaluating the function F(A) at an arbitrary
starting point 4, and then at successive intervals
of AA noting the interval where F(4) changes
sign. The interval is then halved until the root
is found to a specified accuracy e. A value of
0001 for ¢ proved quite sufficient. After the
roots of F(A) = 0 are found for various values

F1G. 3. Velocity distributions in Poiseuille flow.

of I', the temperature and velocity distributions
may be calculated by substitution into relations
(2.14) and (2.17) for the Picard solution, and
relations (2.29) and (2.30) for the variational
solution.

The actual profiles for both temperature and
velocity for the variational solution are suf-
ficiently close to those of the Picard solution
as to prevent accurate plotting. For this reason,
only the Picard solution for velocity and tem-
perature distributions are plotted in Figs. 3 and
4. Close comparisons of the variational and
Picard solutions may be made by examining

YLy
1)

F1G. 4. Temperature distributions in Poiseuille flow.
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the detailed data presented in Table 1. A
graph of per cent temperature variation vs,
the non-dimensional radius is presented in
Fig. 5 and a similar graph is presented in Fig. 6
for per cent velocity variation.

P
o 0-25 0-5 0.75 -0

] 2 ]
§
S i0 //
$ .0 ,/ V.
2 16 /
°
s 20

-2-0
£ /
3 r«30
; —
a -3.0

F1G. 5. Per cent temperature difference for a variational
solution to Poiseuille flow based on a Picard approximation.

e 0
s
% o}
= 2
——
g " 20
()
s
Q.
0-25 05 o-75 10
P

F1G. 6. Percent velocity difference for a variational solution
to Poiseuille flow based on a Picard approximation.

It is apparent from the previous graphs and
tables that the solution for the temperature
distribution by the variational method agrees
very well with the solution using Picard’s
method for all but the largest values of the flow
parameter I'. The error for the velocity distribu-
tion increases with higher values of I', however
the error approaches 10 per cent for a value of
I = 20 which corresponds to a very high

H. W. BUTLER and ROBERT RACKLEY

Table 1. Dimensionless temperature and velocity profiles as a
function of the flow parameter and the radius p as obtained by
Picard’s (p) and a variational formulation (v)

r o T(v) T(p) u*(v) u*(0)
2 00 10155 10157 02499 02514
01 10155 10157 02475 02489

02 10155 10157 02399 02413

03 10154 10156 02275 02286

04 10151 10153 02000 02108

05 10145 10147 01875 01880

06 10135 10136 01600 01602

07 10117 10119 01275 01273

08 10092 10092 00900 0089

09 10053 10053 00475 00471

10 10000 10000 00000 00000

16. 00 11177 1-1307 0-7049 07612
01 11177 11307 06978 0-7533

02 1-1175 1-1305 06767 07294

03 1-1167 1-1294 06415 0-6896

04 1-1114 1-1269 05921 06340

05 1-1103 1-1121 05287 0-5628

06 1-1102 1-1117 04512 0-4764

07 1-0894 1-0959 03595 03758

0-8 1-0695 10727 0-2538 0-2618

09 1-0405 1-0408 0-1339 0-1361

10 10000 1-0000 0-0000 0-0000

Table 2. Dimensionless temperature and velocity profiles as a

Sunction of the flow parameter y and the dimensionless space

coordinates ¢ as obtained from an exact solution (e} and a
variational formulation (v)

X ¢ T(v) T(e) i(r) i(e)

05 -10 1:0000 1-0000 0-0000 0-0000
-08 1-0750 1-0422 0-0951 00891
-06 1-1133 1-0772 0-1935 0-1951
-04 1-1751 1-1033 0-2943 02867
-02 1-2001 1-1195 0-3967 0-3923
0-0 1-2084 1-1250 0-5000 0-5000
02 1-2001 1-1195 0-6033 0-6077
04 11751 1-1033 0-7070 07133
0-6 1-1133 1-0772 0-8065 08149
08 1-0750 1-0422 09049 0-9109
1-0 1-0000 1-0000 1-0000 1-0000
40 -10 1-0000 1-0000 0-0000 0-0000
-08 1-:3424 1-2438 0-0888 0-4788
-06 1-6087 1-5053 0-1851 01199
-04 1-7990 1-7514 0-2869 02212
-02 19132 19326 03925 0:3513
00 19512 2-0000 0-5000 0-5000
02 19132 19326 0-6074 0-6486
0-4 1:7990 1-7514 07131 07788
06 1-6087 1-5053 0-8149 (-8801
08 1-3424 1-2438 09112 09521

1-0 1-0000 1-0000

1-0000 1-0000




VARIATIONAL FORMULATION TO NONEQUILIBRIUM FLUID FLOW

flow rate. Since the percent error is based on
the Picard method, the comparison is made
between two approximate solutions. However, a
comparison to the work of Hays [3] indicates
that the Picard’s approximation to the exact
solution is reasonably accurate.

Couette flow

The relationship between the flow parameter
x for Couette flow and the temperature ratio n is
given for the closed form solution by the simple
relation (3.18). For a given value for g, the
temperature and velocity and temperature func-
tions (3.19) and (3.20) become functions of the
dimensionless coordinate ¢ alone. The y — 7
relationship for the variational solution is a
complicated form requiring both relations (3.26)
and (3.29). Recourse to the digital computer
must be made to find the temperature ratios n
for given values of the flow parameter y. The
bisection method described in the previous
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section is used for this task. Once the root
n < 190 is found, the temperature and velocity
distributions are easily generated from equations
(3.30) and (3.31).

Again close agreement between the variational
and closed-form solutions prevent accurate
comparison by plotting of temperature and
velocity profiles. The temperature and velocity
distributions as found from the exact solutions
are shown in Figs. 7 and 8. Detailed data are
presented in Table 2. A graph of percent tem-
perature difference vs. the non-dimensional
space coordinate ¢ is presented in Fig. 9 and
the analogous graph for velocity data is pre-
sented in Fig. 10.

g 8 |T.'\ P
© -
$ | 4—TFo N
o
8 [ o3 AN \
£ o N
= N
§ x *40 —
e o
a
0-25 05 075 10

¢

FIG. 9. Percent temperature error for variational solution
based on exact solution to Couette flow.
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FiG. 10. Percent velocity error for variational solution based
on exact solution to Couette flow.
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Résumé—Les articles récents de Glansdorff, Prigogine et Hays ont montré qu’un principe variationnel
peut 8tre appliqué aux problémes de Pécoulement d'un fluide. Comme exemples de P'emploi d’une
formulation variationnelle, les problémes de ’écoulement incompressible visqueux a faible vitesse entre
des plaques paralléles et dans un tube circulaire sont résolus dans le cas ol les coefficients phénoméno-
logiques de conductivité thermique et de viscosité sont fonctions de la température. La méthode de
Rayleigh-Ritz est employée sous forme variationnelle pour obtenir des solutions qui sont comparées
aux solutions obtenues par des techniques analytiques directes. On obtient un accord étroit entre les deux
méthodes d’analyse pour les écoulements de Couette et Poiseuille, établissant ainsi un degré de confiance
dans la solution variationnelle des problémes pour lesquels des solutions directes ne peuvent pas étre
obtenues.

Zusammenfassung—Die neueren Arbeiten von Glansdorff, Prigogine und Hays haben gezeigt, dass ein
Variationsprinzip auf Probleme der Flissigkeitsstromung angewendet werden kann. Als Beispiele fiir
Variationsformulierungen sind Probleme der langsamen, zihen, inkompressiblen Stromung zwischen
parallelen Platten und in einem Rohr mit Kreisquerschnitt fiir den Fall gelost, dass die phiinomenolo-
gischen Koeffizienten der Warmeleitung und der Zahigkeit, Funktionen der Temperatur sind. Die Methode
von Rayleigh-Ritz wird mit der Variationsform verwendet, um Losungen zu erhalten, die verglichen werden
mit Losungen, die sich durch direkte Analyse ergeben. Gute Ubereinstimmung zwischen den beiden
Methoden zeigt sich sowoh! fiir Couette- als auch fiir Poiseuillestromung, womit sich ein Zuverlassigkeits-
mass fiir die Variationslsung ergibt, fiir die Probleme, die keine direkte Lsung erlauben.

Awmoranua—B wnegaBHo onyGnukoBauHMX crarveAax Imamcpopda, Ilpurommua u Xetica
TIOKABaHO, YTO BAPHAUMOHHLN NPMHLMI MOM(HO NPMMEHUTH K 3aa49aM TEYEHMA MUZKOCTH.
IIpumepamu NpHUMeHeHUA BAPUALMOHHOTO METOJA ABJAIOTCA 3aJaYM ME[JIEHHOTO TeUeHUH
BABKOM HECHUMAEMON KUIKOCTM MEKAY NApaJIeTbHEIMU IIACTMHAMU U B Kpyrjoit TpyoOe,
KOTOpHIE pellleHH [JIA CIy4ad, KOrAa (eHOMeHOJIOTHYecKue KODPOPUUHMEHTH TenJOHPOBOJ-
HOCTH W BABHOCTH ABIAWOTCA QyHKuuAMEH TeMaeparypu. Merox Penea—Purua B paprauuon-
HOM BHJE WCHOJNB3OBJICA LIS MOJIYYeHHA pelueHult, KOTOPHe CPABHUBAIOTCA ¢ PeHICHMAMH,
HOJYYEHHHIMY HENOCPENCTBEHHBMH aHaluTHYeckuME Merojamu. Ilonmydeno xopomee co-
OTBETCTBHE MEKAY 3TUMU IBYMA MeToRamMu Aaa Tevenuit Hysrra n [Iyaselins ; ranum oOpazom,
YCTAHOBJEGHA BO3MOMKHOCTL IIPMMEHEHWA BapHAIMOHHBIX MeETOHOB K TeM 3ajavaMm, AJA
KOTOPHIX TOYHbIE PelIeHNA He MOryT GHITb MOJY4YEHH.



